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During growth or melting of the nematic phase at the expense of the isotropic one caused by pulling
the sample from a hot into a cold thermal contact, or vice versa (directional ordering or melting), the
two-phase front undergoes a morphological instability on the mesoscale at a critical pulling speed,
known under the name of the Mullins-Sekerka instability. Their original work [J. Appl. Phys. 35, 444
(1964)] focused on the diffusive nature of the instability: it is driven by impurity diffusion. At large
speeds—where the destabilizing diffusion length is small enough—the front restabilizes into a planar one
due to surface tension. The anchoring of the liquid crystal molecules on both the front and the plates
within which the sample is confined causes strong distortions of the molecules, which react on front dy-
namics. In this paper, we present a general formulation for the coupling between elasticity in a nematic
phase and front dynamics during growth or melting of the nematic phase. As an exploitation of this
model, we confine ourselves to a simplistic geometry of the director configuration in the linear regime
(where the front depletion is small). We find that both during growth and melting, the coupling leads to
a drift of the pattern along the two-phase front. During melting, and at large enough growth velocities
(which are experimentally accessible and lie in the range 100-200 um/s), the coupling is stong and leads
to a large shift of the restabilization speed. We present the results in a physically appealing picture.
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I. INTRODUCTION

When a solid or a liquid crystal is directionally grown
(i.e., pulled at a constant speed V in an applied thermal
gradient) or dissolved, the planar front is susceptible to a
morphological instability, first analyzed by Mullins and
Sekerka [1]. Since their original work, the problem of
pattern formation in crystal growth has shown impressive
development both theoretically and experimentally. A
recent renewed interest was stimulated thanks to growth
experiments on a nematic phase by Simon, Bechhoefer,
and Libchaber [2], which revealed various symmetry-
breaking bifurcations, such as parity breaking of the cel-
lular structure. An important insight toward the under-
standing of the growth processes has been recently
achieved by focusing on the large speed regime, where
the front equation turns out to be more tractable. Nu-
merical along with analytical efforts have shown that an
initially cellular steady-state pattern may undergo a cas-
cade of symmetry-breaking bifurcations, leading ulti-
mately to transition to chaos [3-5].

Despite the considerable amount of knowledge that has
been accumulated, a full understanding of the various ex-
perimentally pertinent ingredients in liquid crystal sys-
tems is far from being acquired. For example, following
an experimental observation on an extended traveling
mode during growth of a nematic phase by Simon and
Libchaber [6], Oswald [7] devised an experiment that
showed that such a mode was induced by the
configuration of the director in the liquid crystal. More-
over, Simon and Libchaber [8] observed in a subsequent
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experiment, a new mode of growth where the cells exe-
cute a collective oscillatory tilting: The whole cellular
pattern tilts to, say, the right, and then to the left, and so
on. The observed propagation velocity along the front is
so high that it is natural to attribute it to the sound speed
in the nematic phase. These phenomena clearly point to
the fact that elasticity in the nematic phase is very active
in the process by which patterns are formed.

The main objective of this work is to formulate the
growth problem in the presence of elasticity. In order to
make contact with the theory, we shall first exploit the
model by confining ourselves to a simple geometry of the
director in the linear regime. Nonlinear effects, along
with a more realistic director topology, will be the subject
of a future work.

An important result to emerge from our analysis is that
coupling between elasticity and front dynamics is strong.
In the simplistic configuration we have considered, name-
ly that the director makes a fixed angle with the front, we
find that (i) during growth, the coupling leads to a drift of
the pattern and that (ii) during melting, besides the drift,
the coupling significantly shifts the restabilization veloci-
ty.

Here is a brief survey of the presentation. In Sec. Il we
present the full growth equations. We shall then special-
ize the model to some situations, such as a one constant
approximation in the Frank-Oseen free energy. In Sec.
III, we consider a simple director configuration and
characterize the planar front solution. We then analyze,
in Sec. IV, the linear stability analysis for growth. In
Sec. V, we deal with melting. The summary together
with outlooks will be presented in Sec. VI.
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II. BASIC FORMULATION

We consider the standard directional setup. A sample
is pulled in the z direction at a constant speed V. We
shall consider an extended geometry, so that in a first lev-
el we will disregard the anchoring problem on the plates,
within which the sample is confined. We shall come back
to this point in Sec. VI.

In the isotropic phase, the equations of motion are the
standard ones. As usual we neglect heat transport, hy-
drodynamics, and assume identical thermal properties of
both phases. Let z={§(x,t) designate the instantaneous
front position. The sample is pulled at a constant speed
V in an external thermal gradient G. Mass conservation
in the isotropic phase reads (in the laboratory frame)

oC, oC,
ot az

where C; is the impurity concentration and D; the
diffusion constant.

To deal with the nematic phase, let us first consider the
motion of the director, which is specified by the unit vec-
tor m(r,t). Its equation can be written in the general
form from -conservation of the angular momentum
[9-12].

=D, VC, , 1)

dQ
IWZFF_FI‘ViSC . (2)
The term on the left-hand side is the inertial one: I is the
inertial momentum per unit volume and

Q=mX(dm/dt) is the angular velocity. The second
term on the right-hand side of (2) represents the viscous
term and is given by

l-‘visc: —71mx ’ (3)

dt
where y, is the shear viscous coefficient. The first term
on the right-hand side of Eq. (2) represents the elastic
force contribution to the torque, and is given by

1—‘F:_tn><h ’ (4)

where h is the so-called molecular field, and is nothing
but the functional derivative of the Frank-Oseen free en-
ergy, F
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i
fis the free energy density given by
f=1K,(divm)*+1K,(m-rotm)*+ LK ;(mXrotm)® ,

(6)

where K,, K,, and K,; are the elastic constants,
representing splay, bend, and twist deformations, respec-
tively. Note that repeated indices are to be summed over.

Actually, for the practical purposes, the inertial term
in (2) is negligibly small. Indeed I °=paz, where p(~1
g/cm?) is the density and a(~20 A) is the length of
the molecule. Therefore, the inertial term ~10712
? g/cm® (where w is a typical rotation frequency of the
director). This term is to be compared to y,w (the
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viscous term). Typically y;~0.1-1 g/(cm?® s). There-
fore, as long as one is interested in not too high frequen-
cies (0 <<10'° 7!, which are too high values in growth
experiments) we can safely neglect the inertial term. The
final form of the director equation can then be written as
[by using (2)-(6)]

dm
—+h= s
Y1 dt Sm

(7)
where S is a Lagrange multiplier that enforces m>=1.

Here we shall restrict ourselves to a situation where the
system is invariant in the direction orthogonal to the
plates (i.e., the y direction). This implies that twist defor-
mations are absent (mXrotm=0). Moreover, we limit
ourselves to a one constant approximation
K,=K,=K;=K. Under these assumptions, the molecu-
lar field takes the form

3*m,

x?

*m,

dz?

3’m,

dx?

3*m,

h,=—K
dz?

X

(8)

so that each component (i =x,z) of the director obeys the
following simple equation:

3’m;

dx?

a’m
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i
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The director dynamics equations are better expressed in
terms of the angle ¢ defined by m,=sin(¢) and
m,=cos(¢). It is then easy to see from Eq. (9) that ¢
obeys (in the laboratory frame moving in the z direction
at velocity V with respect to the sample)

3 _ 86
0z

— 2
Y KV . (10)

71

Let us now deal with the mass diffusion problem. The
impurity concentration in the nematic phase obeys the
following equation

Cs 2% _4iv[D,VCy+ D, (m-VCs)m]

—_— V= m- m] ,

ot oz iv[D,;VCys a s
which involves the nematic anisotropy. The quantity
D,=D,—D,, where D| and D, are the diffusion con-
stants along and perpendicular to the molecules, respec-
tively. At the interface we must require continuity of
mass transport, which amount to

(DlVCS _DLVCL )'n+Da(m'VCS )m‘n
=—(Cg—C.)vn,

(11)

(12)

where n is the normal vector pointing into the isotropic
phase and v-n is the normal growth velocity. The bound-
ary conditions must be supplemented with the chemical
condition at the interface. For a molecularly rough inter-
face, we assume local chemical equilibrium. Then, ex-
panding the chemical potentials for the binary mixture
about a reference point, we find [13]

Cs=kC; , (13)

’
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Ty
Ty+tm Cp—2——n;t;n; (14)

GE+Ty= R

K
lyL

where k is the segregation coefficient, T,, the melting
temperature, ¥ the surface tension, L the latent heat per
unit volume, m; the liquidus slope, and t; the stress ten-
sor given by

___df am; om
t a(amk amk+a2m 3 +a3m1 a . (15)

a, and a; are the Leslie coefficients [14,15]. Equation
(14) is the modified Gibbs-Thomson condition in the pres-
ence of elasticity. Actually, for situations where the tem-
perature is not too high, #; <<L. Indeed, t;~K/d 2
where d is a typical scale for the director deformation
(say, of the order of a um, while K ~107!2 N), so that
t;;~107*J cm™>. Since L ~1-10 J/cm’, this contribu-
tion can safely be neglected.

Finally we must specify the other boundary conditions.
First, the concentration far ahead of the interface is
maintained at C; =C_. The other condition is a new
one: It expresses how the director behaves at the inter-
face. Contrary to what happens for liquids or solids, in
liquid crystals we may have the situation where the sur-
face energy fixes the large scale behavior, while the bulk
elastic energy fixes that of short scales! (Think of a drop-
let. At short scales, the surface energy dominates. The
form is spherical, while at large scales gravity makes it
flatter, which may just be the opposite for liquid crystals!)
To see this, it suffices to compare the surface energy to
the bulk energy. Without loss of generality, consider
only pure bend deformations (actually the following
reasoning is rather dimensional, and the present assump-
tion is irrelevant). Then the bulk elastic energy is simply
Foox~ sz(ae/ay)Zdy (y is the axis along which the tor-
sion takes place). If d designates the typical length for
the director deformation, then we have Fy, ~K,/d.
The pinning of the director at the surface is characterized
by a certain energy of interaction with the interface, so
that Fg, = A =const. (It has a dimension of an energy
per unit surface.) This implies that Fy, /Fg,+~K,/d A.
One thus sees that at large scales d >d* =K, / A4 surface
energy prevails, while at short scales the bulk energy
dominates. One expects a priori d* to be of the order of
molecular scales. Indeed K, (from a purely dimensional
analysis) is a molecular interaction energy U divided by a
molecular length a, U/a, whereas 4 ~U’/a?, where U’
is the director-“wall” energy interaction (the wall is the
isotropic phase). Contrary to what might happen with a
chemically treated real wall, here the involved energy in-
teraction U’ is expected to fall in the same range as U, so
that d* ~a, a molecular scale. As d >>d*, one may be in
a situation where surface energy prevails. That is to say
the director is—down to some scale (see below) —pinned
at the interface, while the director in the bulk should ac-
commodate to obey such a pinning. The condition on m
at the front is simply given by

m-n=cos(¢,) , (16)

where ¢, is the pinning angle, reflecting the details of the
(anisotropic) interaction of the director with the inter-
face.

A remark is necessary before proceeding further. We
must mention here that the fact that we take, for the
evaluation of A4, a length of the order of the molecular
length is only dictated by intuition. Some experiments
[16,17] reported that the interface thickness is about
100 A. Thus, if one uses this value in the evaluation of
the interface energy instead, one finds that d*~1 um, a
scale that may become comparable to the pattern wave-
length. That is to say, that below this scale we expect
both energies to contribute. However, in view of experi-
mental observations [16], we can still say that the angle,
up to scales of the order of 100 A, points in a preferred
direction, as represented by Eq. (16).

The set of Egs. (1)-(16) completely describes the gen-
eral front dynamics coupled to the nematic elasticity,
which we shall now treat in some specific cases. Before
going further, let us mention that K /v, which has the
dimension of a viscosity (or a diffusion coefficient), is in
the range 107°-1077 cm?/s, which is of the order of the
impurity diffusion constant, D~ 1077 cm?/s for the
nematic liquid crystal 8CB [which is in a homologous
series of 4-cyano-4'-(n-alkyl)bipheny! liquid crystals] [18].
Therefore, we expect the coupling between elasticity and
growth dynamics to be important.

We find it convenient to introduce dimensionless quan-
tities

X z 14 [

S R an
c—C, T

u—T, T—AT, (18)

where [=2D; /V, T=l2/DL, AC=[(1—k)/k]C,, and
=|m;|AC. The variables with tildes refer to the
physical ones. The full equations of motion become then
(i) isotropic phase

ouj auL
+2 —, 15
V Uy oz ot ( )
(ii) crystalline phase
5 a aus
v WVoug+2—— 3z +V V- [(m-Vug)m]= 3’ (20)
(iii) interface
(v,Vug—Vu;)n+v,(m-VCg)m-n
=—(ug—uy) 2+§§- n,, (21)
ot
where v,=D,/D; and v,=D,/D;. The director Eq.

(10) takes the form

9 _ o2 9¢
o =nVig+2eL (22)

where 1=K /Dy ;.
ning condition

This equation is subject to the pin-

m-n=cos(d,) . (23)
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Finally, the local equilibrium equations [Egs. (13) and
(14)] read

ug=k(u;—1), (24)
wp=1—du, (25)

Iy
where [;!=IG/AT is the thermal length and

dy=yT, /ILAT the capillary length. Note that both
lengths are reduced by the diffusion length /.

III. PLANAR FRONT SOLUTION

The set of Egs. (20)—-(25) admits a planar front solution
moving at a constant speed V. The front position will be
taken at z=0. The director Eq. (22) subject to (23) is
solved by ¢=¢,, that is to say the director is uniform
(m=m"). The diffusion field is simply given by

u, =0, z<0, (26)

s
up=e 2, z>0. 27)

The concentration field is exactly the same as the one
without elasticity. This is a result of the fact that for
growth, the diffusion field in the nematic phase is con-
stant; there is no diffusion current. We shall see that this
is not the case during melting.

IV. LINEAR STABILITY ANALYSIS

where g is the wave number and o the amplification (or
attenuation) rate that we wish to determine. The
response of the bulk fields is written as

dm=m—m’=em!(z)e ™t , (29)
du; =u; —u)=cuj(z)e e (30
Sdug=ug=ud=cug(z)e ™+t 31

The response of the director to the perturbation is writ-
ten in terms of ¢ as

dp=¢—d,=cd (2)e !, (32)

Inserting this expression into Eq. (22), we obtain

¢,(z)=Adet*, (33)
where
p=—[1—(1+n0+1%¢»)"?1 /9 . (34)

A is an integration constant that is easily obtained from
the pinning condition [Eq. (23)] to be 4 =—igq.

Inserting (30) and (31) into (19) and (20), neglecting all
but linear terms in €, we obtain two equations for u; and
u 51, the solutions of which are

_ _ . ul(z)y=dAge "7, 35)

We study regression of fluctuations by looking for solu-
tions of the form ul(z)= ASe”SZ , (36)

E(x,t)=ge®Tor | (28)  where

J

pr=1+(1+0+q>"?, 37
ps= 1 —(1+iv,q cosdesingy)+[(1+iv,q cosdesingy)?+ (v, +v,cos2do N+ (v, +v,sin’do)g*) 172 Hv, +v,cos’dy) ! .

(38)

A; and Ag are integration constants. Using the bound-
ary conditions [Egs. (21), (24), and (25)] to order €, we
find

A =2—1;7'—dyq?, (39)
Ag=—k(l;'+dyg? , (40)
o= Ag[(v,+v,co8’py)us +iv,q cosdsing,]

+ A, [y 20k —1)]—4k . 1)

Combining these equations and using the definitions (37)
and (38), we obtain the following dispersion relation:

w=—2—(I;7'+dyq?)
X[ 1+ (v, +v,cos’pg)o+(Vi+v,v,)q?
+2iv,q cosgsing,]'”?

+2—Ir'—dyg)1+0+g¢»)'?, (42)

where we have set k=1. Note that elasticity does not
play a role at this order; the parameter 7 [which charac-
terizes nematic distorsions; its definition is given after
(22)] is absent from the present dispersion relation. The
effect of the director enters via anisotropy only. The new
feature is that at the Mullins-Sekerka threshold, the spec-
trum contains an imaginary part, which should manifest
itself by a drift of the structure transversely to the front.

In this section we shall confine ourselves to the low-
velocity regime, where g >>1 (recall that g is reduced by
the inverse of the diffusion length). In this limit, an ex-
pansion to leading order in g of (42) yields

or z—2+[2—(1+\/Vlv”lT'1)]q+(1+\/vlv“)d0q3 R

v,C08¢singd,

——— (I '+dyg?) , (44)
Vv,

W= —
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where we have introduced the real and imaginary parts of
o, wg, and w;. At the bifurcation point (defined by
wg =0 and dwg /0g =0). The critical condition for the
onset of the instability, and the critical wave number are
given from (43) by
171 = —2—_— N (45
( T )c (1+’\/’Vl'vﬂ) )

1
(1+1V vv)d,

2/3

q2= (46)

At the bifurcation point w; is easily obtained from (44),
and thus the drift velocity (V,;=w;/q,) reads
w 2v,cosdysin
Vd — _I - a ¢O ¢0 ) (47)
q \/va“(lﬂ-\/VlvH)

Recall that this velocity is reduced by the pulling speed.
Its magnitude is fixed by that of the pinning angle. Since,
generically, ¢, is finite, the physical drift velocity is a no-
ticeable fraction of the pulling speed. Note also that ¥,
vanishes for two special situations: (i) If v, =0 (recall that
v,~D,—D,). Thisis what we could expect, since during
growth the presence of a nematic phase manifests itself
via anisotropy. In the purely isotropic case, there should
be thus no effect of the nematic phase. (ii) If ¢,=0 or
¢o=m/2 (modulo 7). This is also what we could have a
priori expected. In the first case, this means that the mol-
ecules are perpendicular to the front, while in the second
case, they are parallel to it. Since the present drift is in-
duced by the loss of right-left symmetry (due to the pin-
ning in a preferred direction), it is clear that for
¢o=0,7/2 the reflexion symmetry about the growth axis
is restored and the drift disappears. Of course, we could
not exclude the fact that the coupling between elasticity
and the front dynamics leads to a Hopf bifurcation.
However, since there is no zeroth-order diffusion current,
one expects the coupling to be directly related to anisot-
ropy; that is to say that in the situation where ¢,=0,7/2,
the bifurcation is expected to be stationary. This expec-

J

pr=—1+(1+w+g*'"?*,

tation is not obvious, however, in the case of melting (see
next section).

V. MELTING

The front dynamics equations in this situation are of
course those presented in the preceding section, after sub-
stituting the drift velocity ¥ by —V. We must keep in
mind, however, that this is true only in the context we are
considering: The contact with the glass plates is disre-
garded (see Sec. VI). As shown experimentally by
Bechhoefer [18], the contact with the plates may
significantly affect an asymmetry between growth and
melting. This remark may lead to further future investi-
gations with the aim of clarifying the dynamics of wetting
in such systems.

In order to keep the reference front position at z=0,
we must choose the temperature origin not at
T=Ty+m;C_ /k (as we did in the case of growth) but
at T=Ty,+m;C,. We do not find it worthwhile to
rewrite the equations, but directly write the main lines of
the solutions. In the planar front configuration, we find
(by keeping the same notations as for growth)

u;, =0, z>0, (48)

Zz/(vL+vacosz¢o)
e

ug=—k , 2<0. (49)

In the linear regime, the angle deviation ¢, reads

¢,(z)=—ige"* , (50)
where
p=[1+(1+n0+7%¢*)""*1/q . (51)
The diffusion fields in both phases are given by
up(z)=Age "7, (52)
ud(z)= Age"S*+Be™* , (53)
where
(54)

ps ={(1—iv,q cosdsing,)[(1—iv,q cosdosingy)?+(w+ (v, +v,sin’pg)g?) (v, +v,cos?dy)1'/2} (v, +v,cos’dy) 7!,

2

M=p+—2——
H v, +v,cos’d,

(55)

(56)

and B, which raises from the inhomogeneous solution of the diffusion field in the nematic phase due to the presence of a

zeroth-order current, is given by

2ikv,q

B=———"""—{2cosdgsingy[2+ (v, +v,cos’do)u]+ig cos(2¢,) (v, +v,cos’d,)}

- (v +v,cos2py)?

X [(v,+v,cos2py)M?>—2(1—iv,q cosdsingy )M —(w+ (v, +v,sin’py)g?)] ! . (57
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The general dispersion relation is given in the Appendix.
Here we shall write its expression in the simple case
where ¢,=0. We have already seen that ¢;70 induces a
drift of the pattern. Since in the present case the cou-
pling between elasticity and the front is not trivial —due
to the presence of a zeroth-order diffusion field in the
nematic phase—we find it useful not to analyze simul-
taneously all the effects. We shall, therefore, for sake of
clarity, focus on the situation where ¢,=0. In this limit,
the dispersion relation reads

2

o=——+%+

2 _
____IT l_quZ
Y

(1—i—vlvuq2+v”a))1/2
Yi

—(I7 ' +dygH)(1+g*+ )2
N +2v,¢ v+ 1—(1+v v g +vw)'/?]
vﬁp,z + 2v“,u — (v”w + vviq 2)

(58)

Note that w is a priori complex. In the pure Mullins-
Sekerka limit, the principle of exchange of stability holds
[19] (that is, wg =0 implies automatically that w;=0).
Here, due to the complexity of the dispersion relation, it
has not been possible to establish whether the bifurcation
is of Hopf type or not in the general case. However, both
in the small- and large-velocity regimes, we can easily
show that the bifurcation is steady (recall that if ¢, is ar-
bitrary we must always have an imaginary part represent-
ing the drift). At intermediate velocities, a numerical
analysis of the dispersion relation shows—for the set of
typical parameters used so far—that the same conclusion
holds.

Let us now admit the stability exchange principle, and
analyze the dispersion relation in the two extreme re-
gimes. In the low-velocity regime (where g >>1), Eq. (58)
yields

0=[2—1+Vvw)I; 'lg—+Vvw)dog* +# ,
(59)

where 7 represents higher-order terms. The effect of the
coupling is clear. On the other hand, the penetration
length of the direction distorsion in the nematic phase is
of the order of ¢ ~!. This means in physical variables that
the penetration length is much smaller than the diffusion
length. That is to say that there is a scale separation be-
tween the governing growth length (diffusion length) and
the one associated with nematic distorsions, so that to
leading order the nematic elasticity does not affect front
dynamics. This explains why there is no trace of elastici-
ty in Eq. (59). At this scale, the nematic effect shows up
in the diffusion anisotropy only. In the isotropic case
v,=v,;=1. We thus see from Eq. (59) that anisotropy sta-
bilizes (destabilizes) if vyv,>1 (vjv;<1). A diffusing
atom explores, within a typical collision time 7, a surface
S ~Dr. In the anisotropic case, this surface (which is an
ellipse on the average) is S~V DD, r. Thus, the condi-
tion vjv, >1 (vv, <1) simply means that the surface ex-
cursion is larger (smaller) than in the isotropic case. In
the first (second) case, an impurity makes longer (shorter)
excursions before it responds to interface fluctuations, so

that the front is more stable (unstable).

In the other extreme limit of large speeds (where
q << 1), expansion of (59) to leading order in g provides
us with

(vl —2dg vt (60)
o= vvilir 0 VN(I+V\|/77) q” .
Elasticity is represented here by 7 (~K) in the last term
of the dispersion relation. The presence of the nematic
phase results in a renormalization of the capillary forces.
In the purely isotropic case, we have v (1+wv, /7)/
(1+v,/n)=1, and the limit of absolute stability (attained
when /7 !—0) is given by 2d,=1. In the presence of an-
isotropy, the new absolute stability limit is given by
2dy=v(1+v,/n)/(1+v; /7). Thus, the coupling to the
nematic phase may stabilize or destabilize the front de-
pending on whether v\ (1+v,/7)/(1+v;/9)>1o0r <1.

Figure 1 summarizes the results of the linear stability
analysis where typical values of the physical parameters
are used (see caption). These parameter values corre-
spond to those given for 8CB by Bechhoefer et al. [20].
The full line is the usual neutral curve, the dashed and
dotted ones correspond to the case where elasticity is
present with two different set of parameters. Few re-
marks are in order. At low velocity, the effect of elastici-
ty is weak. This is traced back—as discussed above—to
the scale separation of diffusion and nematic distorsions.
In the large velocity regime, distorsions penetrate far in
the bulk. [The penetration length is of the order of
1/m~10X1, see expressions (50) and (51), and their effect
is, therefore, detected by the diffusion field.] The shift of
the restabilization velocity (the upper maximum in Fig. 1)
is dramatic. It can easily attain variations of a factor of
2. Thus, the coupling is far from being perturbative.

Note that the shift of the restabilization threshold is a
feature that appears in the melting regime only. Thus,
the experimental study of melting with the aim to analyze

80.0 T T T T T

stable o \

60.0 -

V 40.0

20.0

L . L
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FIG. 1. The neutral curve in the plane (wave number, veloci-
ty). Full line, no anisotropy (and thus no effective coupling to
elasticity). Dashed-dotted line, 17,=0.8, 7,=0.7. Dotted line,
=13, 7,=1.2. In all cases units are such that ;=1 and
D; =1. In these units d,=0.01 (i.e., the capillary length is 100
times smaller than the thermal length).
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the restabilization regime and compare it to that of
growth is crucial to guide further analysis.

V1. SUMMARY AND OUTLOOK

We have presented a general formulation of the cou-
pling between front dynamics and elasticity in a nematic
phase. This work, which is at its first stage, was motivat-
ed by various experimental phenomena, which pointed to
the active role of the nematic phase in pattern selection.

In order to make contact with the formalism, we have
restricted ourselves to some specific situations. We have
shown that generically the coupling results in a drift of
the pattern both during growth and melting. The drift
velocity is a nonnegligible fraction of the pulling speed,
and is thus measurable. During melting, the existence of
a zeroth-order field in the nematic phase induces a non-
trivial coupling. This coupling is relatively weak in the
low-velocity regime. This is attributed to the weak
penetration of the nematic distorsion in the bulk. In the
large-velocity regime—which are by now quite accessi-
ble, and are only in the range 100-200 um/s—the cou-
pling is strong. It results in an important renormaliza-
tion of the capillary length, which shifts the planar front
restabilization threshold by an amount that may reach a
factor of about 2.

Note that in all our study, we did not make use of
values of real physical parameters. We have simply com-
pared the situation where elasticity is present with the
purely diffusive Mullins-Sekerka theory. In order to
make quantitative comparison with real situations, it is
clear that one has, in the future, to focus on this question.
This will be crucial for guiding further theoretical analy-
ses.

Our calculation is linear. It is imperative to deal with
a nonlinear analysis. The first step would be to perform a
weakly nonlinear analysis with the aim to study the na-
ture of the bifurcation. Next, we must focus on the large
speed regime where dynamics are quasilocal [21,22].
This is an important step that has led recently to the
discovery of a myriad of patterns going from order to
chaos [3-5]. Whether or not elasticity significantly
affects, suppresses, or leads to new secondary instabilities
within the generically ten classified instabilities [23], is a
question of paramount importance that should allow us
to recognize which of the instabilities—though all are
potentially present from symmetry arguments—are inti-
mately related to the underlying physics.

Our calculation was made under the assumption that
the anchoring is strong at the front. This is dictated by
the fact that in most cases the director has a preferred
direction in the interface region—which is estimated to
be of the order of 100 A——regardless of the front de-
pletion. This assumption seems reasonable at first sight,
albeit we recognize that it is an important task for future
investigations to direct research along this line in order to
be more precise about this point.

The most important simplification was to disregard the
presence of the plates within which the sample is confined
in real situations. As already discussed, the molecules
have a preferred direction at the interface. For example,

ISOTROPIC

\

NEMATIC

FIG. 2. A typical director configuration induced by the con-
tact to the plates (here the molecules are perpendicular to the
plates) and the pinning at the nematic-isotropic interface. These
two constraints lead to a disclination line (represented by the
cross).

for the nematic liquid crystal 8CB , the molecules lie in a
cone about the interface normal, having an opening angle
of about 48.5° [16]. On the other hand, the plates are
usually treated in such a way that the molecules are per-
pendicular to them (Fig. 2). Thus, in order to simultane-
ously fulfill both matching conditions (at the front and
the plates), a topological defect raises in the form of a dis-
clination line (represented by the cross in Fig. 2) having a
topological charge S=—1 [18]. Experimental observa-
tions [18] on nematic phases have revealed that such a
defect may remain bound to the front as this one moves,
or rather detaches from it, depending on the growth ve-
locity. For a nonmoving front, a disclination line is sub-
ject to both repulsive and attractive forces. Indeed, the
interaction of the line with its image may be repulsive or
attractive depending on whether the director is strongly
anchored or free to respond to the elastic force [24].
More precisely, at large enough scales (far from the front)
the line is repelled by its (positive) image. Close to the
surface (at short scales), however, the line is pushed to-
wards the front. There is, thus, an interplay between
these forces in the mechanism by which the defect moves.
What causes the line to detach from the moving front?
At present, a precise analysis is lacking. We can, never-
theless, provide an estimate about an intrinsic velocity
scale—which should constitute presumably the critical
velocity for the disclination—front unbinding transition.
From a purely dimensional analysis, a typical velocity
scale in the nematic phase—where energy dissipates due
to a disclination fluctuation—is given by the combina-
tion K /y,d, where K is the elastic constant, y, is the
shear viscosity (the Leslie) coefficient, and d is a typical
length scale over which energy dissipates. Since the dis-
clination is in part induced by the plates, it is natural to
expect this scale to represent the plates spacing. Taking
typical values for the nematic liquid crystal 8CB and
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d ~50 um, we find this velocity to fall in the range of
10 um/s. Although the order of magnitude is correct,
the exact observed value for the line detachment is a few
times bigger. Such argument, does not, on the other
hand, explain the mechanism by which a disclination line
detaches. It is imperative, in order to have conclusive
answers, to develop a full analysis including a realistic to-
pology of the director.

We would like to mention that the nematic-isotropic
interface makes, as stated above, a well-defined polar an-
gle with the vertical axis, whereas all the values of the az-
imuthal angle are equally probable. Thus, along the x
coordinate we may have domains with negative and posi-
tive angles. This means, that the director topology at the
front may be more complex than what we expect. We
suggest that an application of a magnetic field along the x
axis, which should remove the azimuthal degeneracy,
constitutes an interesting test of the effect of this degen-
eracy. In particular, if the tilting oscillation observed by
Simon and Libchaber [8] is associated with a flip-flop
movement of the director at the front, the application of
a magnetic field may suppress the instability, thereby pro-
viding crucial information on director dynamics.

Finally, in an interesting experiment, Oswald [7]
brought out clearly the effect of elasticity on front dy-
namics. He concluded that both the topology of the dis-
clination line and the elastic anisotropy strongly affect
certain secondary instabilities. Moreover, Simon and
Libchaber [8] discovered an interesting feature of front
dynamics: At large enough velocities, and for thin
enough samples, the cells collectively tilt from right to
left in a permanent way. The propagation velocity seems
to be much bigger than the growth velocity. It is tempt-
ing to connect this propagation with elastic properties of
the nematic phase.

2ikv,q

In conclusion, we believe that given the wide variety of
fascinating physical phenomena that remain unexplained
to date, the branch of research that involves elastic effects
in a realistic manner, is not only a necessary step in an at-
tempt to account for various observations, but is also an
attractive line of inquiry to bring together features from
the rich soft matter physics and those which pertain to
nonlinear phenomena in dissipative systems.
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APPENDIX

Here we list the full dispersion relation in the melting
case. It can be written as

ko= Ag[(v,+v,cos’po)us +iv,q cosdesing,—2]
+Ap(p+2]
+B[(v,+v,cos’¢y)M +iv,q cosd,sing,—2]

Lok iv,q cosdysing,

3 (A1)
v, +wv,cos°d,
where

A, =—(I7'+dyg?) , (A2)
2

—————)—B, (A3)
v, +v,cos°¢d,

A,=—k(;'+dog*—

and

B=——""—"—"——{2cospgsind,[2+ (v, +v,cos’dy)v]+ig cos(2¢)[v, +v,cos’d,]}

B [v,+v,cos?p,y]?

X {[v,+v,co8’poIM?—2[1—iv,q cosdosing, M —[w+ (v, +v,sin’dy)g2]} ! . (A4)

In the case where ¢,=0, 7 /2, Eq. (1) reduces to (58).

[1] W. W. Mullins and R. F. Sekerka, J. Appl. Phys. 35, 444
(1964).

[2] A. J. Simon, J. Bechhoefer, and A. Libchaber, Phys. Rev.
Lett. 63, 2574 (1988).

[3] K. Kassner, C. Misbah, and H. Miiller-Krumbhaar, Phys.
Rev. Lett. 67, 1551 (1991).

[4] K. Kassner, C. Misbah, H. Miiller-Krumbhaar, and A.
Valance, Phys. Rev. E 49, 5477 (1994).

[S] K. Kassner, C. Misbah, H. Miiller-Krumbhaar, and A.
Valance, Phys. Rev. E 49, 5495 (1994).

[6] A. Simon and A. Libchaber, Phys. Rev. A 41, 7090 (1990).

[7] P. Oswald, J. Phys. (France) II 1, 571 (1991).

[8] A. Simon and A. Libchaber (private communication).
[9]1 P. D. de Gennes, The Physics of Liquid Crystals (Oxford
University Press, London, 1974).
[10] W. Helfrisch, J. Chem. Phys. 51, 4092 (1969).
[11] Group des Cristaux Liquides d’Orsay, J. Chem. Phys. 51,
816 (1969).
[12] W. J. A. Goossens, in Advances in Liquid Crystal, edited
by Glenn H. Brown (Academic, New York, 1978).
[13] For an application to a similar problem (coupling between
hydrodynamics and growth) see C. Misbah, thesis, Univer-
sité Paris 7, 1985; see, also, B. Caroli, C. Caroli, and B.
Roulet, J. Cryst. Growth 66, 575 (1984); ibid. 71, 235



1290 CHAOUQI MISBAH AND ALEXANDRE VALANCE 51

(1985).
[14] F. M. Leslie, Q. J. Arch. Mech. Appl. Math. 19, 357
(1966).
[15] F. M. Leslie, Arch. Ration. Mech. Anal. 28, 265 (1968).
[16] S. Faetti and V. Palleschi, Phys. Rev. A 30, 3214 (1984).
[17] J. Bechhoefer drew our attention on this question.
[18] J. Bechhoefer, Ph.D. thesis, University of Chicago, 1988.
[19] D. J. Wollkind and L. A. Segel, Philos. Trans. R. Soc.

London 268, 351 (1970).
[20] J. Bechhoefer, A. Simon, A. Libchaber, and P. Oswald,
Phys. Rev. A 40, 2024 (1989).
[21] K. Brattkus and S. H. Davis, Phys. Rev. B 38, 11452
(1988).
[22] A. Ghazali and C. Misbah, Phys. Rev. A 46, 5026 (1992).
[23] P. Coullet and G. Iooss, Phys. Rev. Lett. 64, 866 (1990).
[24] R. B. Meyer, Solid State Commun. 12, 585 (1973).



